QJudge

Automated Testing of Students Solutions for Quantum Algorithms Courses

Mansur Ziiatdinov

Kazan Federal University

May 30, 2023

< AP

- 4 ⊒ →

1/20

Outline

Implementation

3 Test Types

イロト イヨト イヨト イヨト

Overview

Why?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣。

Why?

Quantum Technologies competitions

• evaluating solutions in quantum algorithms

Mansur Ziiatdinov (KFU)

э

3/20

(a)

Why?

Quantum Technologies competitions

• evaluating solutions in quantum algorithms

KFU introductory course on quantum algorithms

- ullet pprox 10 students
- final year
- evaluating solutions in quantum algorithms

Automated Testing of Quantum Circuits

• no knowledge of Qiskit/Cirq/etc. expected

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automated Testing of Quantum Circuits

- no knowledge of Qiskit/Cirq/etc. expected
- sometimes students don't know Python

イロト イポト イヨト イヨト

Automated Testing of Quantum Circuits

- no knowledge of Qiskit/Cirq/etc. expected
- sometimes students don't know Python
- quick feedback

< ロ > < 同 > < 三 > < 三 > <

Automated Testing Platforms

- ejudge
- codeforces
- . . .

< ロ > < 同 > < 三 > < 三 > <

Automated Testing Platforms

- ejudge
- codeforces
- . . .

Usual Structure

• list of problems

Automated Testing Platforms

- ejudge
- codeforces
- . . .

- list of problems
- solution is a program

Automated Testing Platforms

- ejudge
- codeforces
- . . .

- list of problems
- solution is a program
- system compiles it

Automated Testing Platforms

- ejudge
- codeforces
- . . .

- list of problems
- solution is a program
- system compiles it
- $\bullet \ \ldots \ feeds$ predefined input to solution

Automated Testing Platforms

- ejudge
- codeforces
- . . .

- list of problems
- solution is a program
- system compiles it
- ... feeds predefined input to solution
- ... checks whether output is correct

Automated Testing Platforms

- ejudge
- codeforces
- . . .

- list of problems
- solution is a program
- system compiles it
- ... feeds predefined input to solution
- ... checks whether output is correct
- ... repeats for all predefined inputs

Automated Testing Platforms

- ejudge
- codeforces
- . . .

- list of problems
- solution is a program
- system compiles it
- ... feeds predefined input to solution
- ... checks whether output is correct
- ... repeats for all predefined inputs
- can't use circuit as solution

QJudge Login test

Password LOGIN STANDINGS

QJudge - Automated Testing System for Quantum Problems

Currently we have 8 problems.

Ask for your account by email.

Name	Circuit 80%	Bit sum	Two marked elements	Odd sum	Search for sum	Puzzle 1	Puzzle 2	Puzzle 3: Solution	Mark
Jury Test User	100 / 100 14.10.2022, 19:12:34	400 / 400 14.10.2022, 19:12:46	800 / 800 24.10.2022, 15:52:13	1600 / 1600 28.10.2022, 15:38:49	200 / 200 05.12.2022, 11:50:25	1600 / 1600 10.11.2022, 18:07:46	1600 / 1600 10.11.2022, 18:09:55	200 / 200 10.11.2022, 18:21:20	6500
student S.O. (11-9xx)	100 / 100 02.11.2022, 17:31:19	400 / 400 02.11.2022, 21:53:27	800 / 800 18.11.2022, 10:35:05	100 / 1600 02.11.2022, 21:57:43	-		-	200 / 200 13.01.2023, 12:14:04	1600

(a)

э

QJudge Hello, Jury Test User! STANDINGS PROBLEMS SUBMISSIONS LOGOUT

Scores

Problem	Name	Times	Mark	Update
A-circ-80	Circuit 80%	14.10.2022, 19:12:34	100	Solve
B-add-1-1	Bit sum	14.10.2022, 19:12:46	400	Solve
C-indices	Two marked elements	24.10.2022, 15:52:13	800	Solve
D-odd-add	Odd sum	28.10.2022, 15:38:49	1600	Solve
E-dj	Search for sum	05.12.2022, 11:50:25	200	Solve
F-puzzle1	Puzzle 1	10.11.2022, 18:07:46	1600	Solve

・ロト ・ 四ト ・ ヨト ・ ヨト …

Search for sum

You are given an oracle that takes a three-qubit register x and a qubit r and then implements the transformation |x>|r> -> |x>|r + f(x)>It is known that the function f(x) (0 <= x < 8) is one of the following two:

- f0(x) = sum of x bits
- f1(x) = 1

Determine the function and return its number in the top qubit in the circuit.

Search for sum

You are given an oracle that takes a three-qubit register x and a qubit r and then implements the transformation |x>|r> -> |x>|r + f(x)>

It is known that the function f(x) (0 <= x < 8) is one of the following two:

- f0(x) = sum of x bits
- f1(x) = 1

Determine the function and return its number in the top qubit in the circuit.

QJudge Hello, Jury Test User! STANDINGS PROBLEMS SUBMISSIONS LOGOUT

Submissions

	ID	Problem	Times	Mark	Update	
					Prev Next	
	DgSYI-Jn7vEp	H-grv	13.01.2023, 10:21:18 13.01.2023, 10:21:22 13.01.2023, 10:21:22	200	View stdout	
	cXyAPOSx7a4H	E-dj	06.12.2022, 13:56:16 06.12.2022, 13:56:19 06.12.2022, 13:56:19	200	View stdout	
	jFG2UWON7oFm	E-dj	05.12.2022, 11:50:22 05.12.2022, 11:50:25	200	View stdout	৩৫৫
Ma	ansur Ziiatdinov	(KFU)	QJudge		May 30, 2023	6 / 20

lkC624VsW5OB	B-add-1-1	14.10.2022, 19:04:08 100 14.10.2022, 19:12:36 14.10.2022, 19:12:36	Vi <mark>e</mark> w stdout
MVqEnXlv-cck	B-add-1-1	14.10.2022. 18:49:57 400 Standard output ×	View stdout
wEyAcf2DF-Zk	B-add-1-1	0K 0K FAIL: Output amplitude of 5 is incorre 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0. FAIL: Output amplitude of 9 is incorre 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j	View stdout
nNa2HiLkRuAs	B-add-1-1	ок 14.10.2022, 19:12:46 14.10.2022, 19:12:46	View stdout
Mansur Ziiatdinov	(KFU)	QJudge	May 30, 2023

6 / 20

Outline

Implementation

3 Test Types

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Architecture

• scalability

• easy deployment

Frontend

• fork of Quirk

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Frontend

- fork of Quirk
- remove gates not supported by Cirq:

(a)

э

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection

(a)

э

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence

(a)

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"

э

9/20

(人間) トイヨト イヨト

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"
 - . . .

(a)

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"

• . . .

• send JSON to backend

3

9/20

・ 同 ト ・ ヨ ト ・ ヨ ト

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"

• . . .

• send JSON to backend

3

9/20

・ 同 ト ・ ヨ ト ・ ヨ ト

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"
 - . . .
- send JSON to backend

Backend

• import to Cirq

9/20

A B F A B F

< 47 ▶

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"
 - . . .
- send JSON to backend

Backend

< 47 ▶

- import to Cirq
- no need to "jail" solution

9/20

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"
 - . . .
- send JSON to backend

Backend

- import to Cirq
- no need to "jail" solution
- run on predefined tests

A (1) < A (1) < A (1) </p>

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"
 - . . .
- send JSON to backend

Backend

- import to Cirq
- no need to "jail" solution
- run on predefined tests

A (1) < A (1) < A (1) </p>
Checking Solution

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"
 - . . .
- send JSON to backend

Backend

- import to Cirq
- no need to "jail" solution
- run on predefined tests

Example

Checking Solution

Frontend

- fork of Quirk
- remove gates not supported by Cirq:
 - postselection
 - time dependence
 - non-physical "gates"
 - . . .
- send JSON to backend

Backend

- import to Cirq
- no need to "jail" solution
- run on predefined tests

Example

Mansur Ziiatdinov (KFU)

May 30, 2023 9 / 20

Outline

2 Implementation

æ

10/20

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• $|001\rangle\mapsto|010\rangle,...$

Ξ.

・ロト ・ 四ト ・ ヨト ・ ヨト …

- $|001\rangle\mapsto|010\rangle,...$
- e.g.: oracle $|x\rangle|b
 angle\mapsto |x
 angle|b\oplus f(x)
 angle$

イロト 不得 トイヨト イヨト 二日

- $|001\rangle\mapsto|010\rangle,...$
- e.g.: oracle $|x\rangle|b
 angle\mapsto |x
 angle|b\oplus f(x)
 angle$
- {"input": {"base": "001"}}

- $|001\rangle\mapsto|010\rangle,...$
- e.g.: oracle $|x\rangle|b
 angle\mapsto |x
 angle|b\oplus f(x)
 angle$
- {"input": {"base": "001"}}
- {"output": {"base": "010"}}

- $|001\rangle \mapsto |010\rangle, ...$
- e.g.: oracle $|x\rangle|b
 angle\mapsto |x
 angle|b\oplus f(x)
 angle$
- {"input": {"base": "001"}}
- {"output": {"base": "010"}}
- special handling of ancilla qubits: e.g. three qubits and ancilla gives state $\alpha_0|0100\rangle + \alpha_1|0101\rangle$

- $|001\rangle \mapsto |010\rangle, ...$
- e.g.: oracle $|x\rangle|b
 angle\mapsto |x
 angle|b\oplus f(x)
 angle$
- {"input": {"base": "001"}}
- {"output": {"base": "010"}}
- special handling of ancilla qubits: e.g. three qubits and ancilla gives state $\alpha_0|0100\rangle + \alpha_1|0101\rangle$
- {"output": {"proj": "010"}}

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

All Amplitudes

• $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$

э

(a)

All Amplitudes

- $|000\rangle \mapsto \alpha_0|000\rangle + \alpha_1|001\rangle + \ldots + \alpha_7|111\rangle$
- e.g.: phase oracle, single operations, ...

3

All Amplitudes

- $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$
- e.g.: phase oracle, single operations, ...
- {"output": {"ampl": [[0,0], ..., [0,0], [-1,0], [0,0], ...]}}

All Amplitudes

- $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$
- e.g.: phase oracle, single operations, ...
- {"output": {"ampl": [[0,0], ..., [0,0], [-1,0], [0,0], ...]}}
- [a,b] means *a* + *bi*

All Amplitudes

- $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$
- e.g.: phase oracle, single operations, ...
- {"output": {"ampl": [[0,0], ..., [0,0], [-1,0], [0,0], ...]}}
- [a,b] means *a* + *bi*
- comparing with precision ε

All Amplitudes

- $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$
- e.g.: phase oracle, single operations, ...
- {"output": {"ampl": [[0,0], ..., [0,0], [-1,0], [0,0], ...]}}
- [a,b] means *a* + *bi*
- comparing with precision ε

All Amplitudes

- $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$
- e.g.: phase oracle, single operations, ...
- {"output": {"ampl": [[0,0], ..., [0,0], [-1,0], [0,0], ...]}}
- [a,b] means *a* + *bi*
- comparing with precision ε

Subset of Amplitudes

• it is tiresome to list all amplitudes

All Amplitudes

- $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$
- e.g.: phase oracle, single operations, ...
- {"output": {"ampl": [[0,0], ..., [0,0], [-1,0], [0,0], ...]}}
- [a,b] means *a* + *bi*
- comparing with precision ε

Subset of Amplitudes

- it is tiresome to list all amplitudes
- you can be interested only in some of them

All Amplitudes

- $|000\rangle \mapsto \alpha_0 |000\rangle + \alpha_1 |001\rangle + \ldots + \alpha_7 |111\rangle$
- e.g.: phase oracle, single operations, ...
- {"output": {"ampl": [[0,0], ..., [0,0], [-1,0], [0,0], ...]}}
- [a,b] means *a* + *bi*
- comparing with precision ε

Subset of Amplitudes

- it is tiresome to list all amplitudes
- you can be interested only in some of them
- {"output": {"sub_ampl": {"001": [0.707, 0.707], ...}}}

• probability of measuring some set of states

3

- probability of measuring some set of states
- e.g. $\Pr[r \in \{|001\rangle, |010\rangle, |100\rangle, |111\rangle\}] \geq 3/4$

3

イロン イ理 とくほと イロン

- probability of measuring some set of states
- e.g. $\Pr[r \in \{|001\rangle, |010\rangle, |100\rangle, |111\rangle\}] \geq 3/4$
- algorithms: Deutch-Jozsa, Grover etc.

3

- probability of measuring some set of states
- e.g. $\Pr[r \in \{|001\rangle, |010\rangle, |100\rangle, |111\rangle\}] \geq 3/4$
- algorithms: Deutch-Jozsa, Grover etc.
- {"output": {"prob": [{"states": ["001","010","100","111"], "req": "GE", "prob": 0.75}, ...]}}

• oracles are special gates that are used in solution

2

イロト イヨト イヨト イヨト

- oracles are special gates that are used in solution
- tests can define different oracles

э

< ロ > < 同 > < 三 > < 三 > <

- oracles are special gates that are used in solution
- tests can define different oracles
- e.g. Deutch-Jozsa when function is balanced and when function is constant

3

イロト イポト イヨト イヨト

- oracles are special gates that are used in solution
- tests can define different oracles
- e.g. Deutch-Jozsa when function is balanced and when function is constant
- tests define list of oracles: {"oracles":[oracle1, ...]}

イロト イポト イヨト イヨト 二日

- oracles are special gates that are used in solution
- tests can define different oracles
- e.g. Deutch-Jozsa when function is balanced and when function is constant
- tests define list of oracles: {"oracles": [oracle1, ...]}
- each oracle is a circuit: {"id":"~ib1j", "name":"Oracle", "circuit": {"cols": [["•","•","•","•",1,"X"], ["o","o","o","o","X"], [1,1,1,1,"X","●"]. ["●", "●", "●", "●", 1, "X"]]}}

Extending

• checker is Python script

2

イロト イヨト イヨト イヨト

Extending

- checker is Python script
- test descriptions are sent to standard input

э

Extending

- checker is Python script
- test descriptions are sent to standard input
- test verdicts are written to standard output

э

Outline

3 Test Types

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• UI for teacher

э

(a)

- UI for teacher
- UI for problem designer

3

(a)

- UI for teacher
- UI for problem designer
- automatic registration with confirmation by email

Image: Image:

3

- UI for teacher
- UI for problem designer
- automatic registration with confirmation by email
- user-friendly error messages

- ∢ /⊐ ►

- UI for teacher
- UI for problem designer
- automatic registration with confirmation by email
- user-friendly error messages
- UI for system administrator

H 16
Current Drawbacks and Future Work

- UI for teacher
- UI for problem designer
- automatic registration with confirmation by email
- user-friendly error messages
- UI for system administrator
- hosted instance

Current Drawbacks and Future Work

- UI for teacher
- UI for problem designer
- automatic registration with confirmation by email
- user-friendly error messages
- UI for system administrator
- hosted instance
- further testing

Outline

- 2 Implementation
- 3 Test Types
- 4 Future Work

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Demo

Demo

Thank you!

QJudge Links

- https://qjudge.gltronred.info (early alpha stage)
- ask me (Mansur Ziiatdinov) for account if you want to try
- source: https://sr.ht/~rd/qjudge

→