
QJudge: Automated Testing of Students Solutions
for Quantum Algorithms Courses

Open-Source Software

Mansur Ziiatdinov∗

Abstract

We describe QJudge — an automated testing system tailored for problems
with quantum circuit solutions.

QJudge allows you to prepare problems and make decisions in the form of
quantum circuits. It can be convenient for use in the initial courses of quantum
programming when students do not yet have sufficient knowledge of quantum
programming libraries.

The paper compares QJudge with other testing systems and describes the
types of problems that are available in QJudge. We discuss the architecture of
the system, as well as the experience of using QJudge for teaching a course on
quantum algorithms.

1 Introduction
Mastering something requires solving exercises. A lot of programming courses include
exercises; many of them use automated testing systems to reduce the teacher’s workload.
However, these testing systems are not suitable for quantum programming courses,
because they require to write code, and quantum algorithms course begins by describing
the computation model of circuits.

There are several games about quantum informatics, but they usually teach about
different gates and quantum mechanics. Moreover, there is no competitive programming
system for quantum tasks that allows to draw circuits, and there is no middle ground
between novices who learn about quantum optics and professionals who program in
Qiskit.

QJudge aims to fill in this gap, and provides a familiar interface for student, who
solves problems by drawing the same circuits that were described at the beginning of
the course.

∗gltronred@gmail.com

1



2 QJudge Overview
User interface of QJudge [1] is similar to other automated testing systems. It provides
a list of problems (exercices), table of user standings, a list of user submissions etc.
However, instead of form to write a code, or to upload a file with solution, QJudge
shows an interface for drawing a circuit. User can drag and drop gates to define a
circuit that solves the problem and submit it to the server.

QJudge uses a modified fork of Quirk [2] to draw circuits. QJudge converts solutions
to Cirq [3] programs and runs them on tests predefined by problem authors.

There are several types of problems that QJudge currently supports. The test de-
fines an input state and describes a correct output state. The output state description
is a base state, amplitudes of all states, or an inequality that the probabilities of mea-
surement results must satisfy.

3 Implementation Details
QJudge is an open-source [4] web application. The frontend part is written in Vue.js
[5], and backend part consists of several services. One service is server that accepts
submissions and puts them into Faktory [6] queue. Another service is worker that
fetches the submission from the queue, runs it on tests, and writes the results into Sqlite
database. The architecture allows to launch more workers if necessary, and balance the
load.

While usual automated testing systems employ some containerization tools to com-
pile and run user submissions, QJudge in the current state don’t require it. User sub-
mission is simply a description of quantum circuit that has no side effects. It is compiled
into Cirq code, and the compilation result also do not have side effects. However, it is
possible to add containerization around the worker, would it be necessary.

4 Conclusions
Author used QJudge to test knowledge of students in the introductory course of quan-
tum algorithms. QJudge can also be used in the introductory level quantum program-
ming contests and other events, where it is required to test knowledge of quantum
algorithms.

However, QJudge lacks the hosted instance that is available to everyone. Another
drawback is the difficulty of defining problems: while tests are simply JSON-files, the
real UI for then would be more convenient.

2



References
[1] Mansur Ziiatdinov. Hosted instance of QJudge, 2022. https://qjudge.gltronred.

info.

[2] Craig Gidney. Quirk sources. https://github.com/Strilanc/Quirk.

[3] Cirq Developers. Cirq, April 2022. See full list of authors on Github:
https://github.com/quantumlib/Cirq/graphs/contributors.

[4] Mansur Ziiatdinov. QJudge sources, 2022. https://sr.ht/~rd/qjudge.

[5] Vue.js Team. Vue.js. https://vuejs.org.

[6] Contribsys. Faktory. https://contribsys.com/faktory/.

3

https://qjudge.gltronred.info
https://qjudge.gltronred.info
https://github.com/Strilanc/Quirk
https://github .com/quantumlib/Cirq/graphs/contributors
https://sr.ht/~rd/qjudge
https://vuejs.org
https://contribsys.com/faktory/

	Introduction
	QJudge Overview
	Implementation Details
	Conclusions

